Recently, there has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed two shortcomings: illogical synthetic SQL queries from independent column sampling and arbitrary table joins. To address these issues, we propose a novel synthesis framework that incorporates key relationships from schema, imposes strong typing, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated natural language questions. When existing powerful semantic parsers are pre-finetuned on our high-quality synthesized data, our experiments show that these models have significant accuracy boosts on popular benchmarks, including new state-of-the-art performance on Spider.
translated by 谷歌翻译
There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022). However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model's ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.
translated by 谷歌翻译
关于文本到SQL语义解析的最新研究取决于解析器本身或基于简单的启发式方法来理解自然语言查询(NLQ)。合成SQL查询时,没有可用的NLQ的明确语义信息,从而导致不良的概括性能。此外,如果没有词汇级的细粒度查询理解,查询与数据库之间的链接只能依赖模糊的字符串匹配,这会导致实际应用中的次优性能。考虑到这一点,在本文中,我们提出了一个基于令牌级的细粒度查询理解的通用,模块化的神经语义解析框架。我们的框架由三个模块组成:命名实体识别器(NER),神经实体接头(NEL)和神经语义解析器(NSP)。通过共同建模查询和数据库,NER模型可以分析用户意图并确定查询中的实体。 NEL模型将类型的实体链接到数据库中的模式和单元格值。解析器模型利用可用的语义信息并链接结果并根据动态生成的语法合成树结构的SQL查询。新发布的语义解析数据集的Squall实验表明,我们可以在WikiableQuestions(WTQ)测试集上实现56.8%的执行精度,这使最先进的模型的表现优于2.7%。
translated by 谷歌翻译
关系提取是一项重要但具有挑战性的任务,旨在从文本中提取所有隐藏的关系事实。随着深层语言模型的发展,关系提取方法在各种基准上都取得了良好的性能。但是,我们观察到以前方法的两个缺点:首先,在各种关系提取设置下没有统一的框架可以很好地工作;其次,有效利用外部知识作为背景信息。在这项工作中,我们提出了一种知识增强的生成模型来减轻这两个问题。我们的生成模型是一个统一的框架,可在各种关系提取设置下依次生成关系三胞胎,并明确利用来自知识图(KG)的相关知识来解决歧义。我们的模型在包括WebNLG,NYT10和Tacred在内的多个基准和设置上实现了卓越的性能。
translated by 谷歌翻译
目前用于开放域问题的最先进的生成模型(ODQA)专注于从非结构化文本信息生成直接答案。但是,大量的世界知识存储在结构化数据库中,并且需要使用SQL等查询语言访问。此外,查询语言可以回答需要复杂推理的问题,以及提供完全的解释性。在本文中,我们提出了一个混合框架,将文本和表格证据占据了输入,并根据哪种形式更好地回答这个问题而生成直接答案或SQL查询。然后可以在关联的数据库上执行生成的SQL查询以获得最终答案。据我们所知,这是第一种将Text2SQL与ODQA任务应用于ODQA任务的论文。凭经验,我们证明,在几个ODQA数据集上,混合方法始终如一地优于仅采用大边缘的均匀输入的基线模型。具体地,我们使用T5基础模型实现OpenSquad数据集的最先进的性能。在一个详细的分析中,我们证明能够生成结构的SQL查询可以始终带来增益,特别是对于那些需要复杂推理的问题。
translated by 谷歌翻译
We consider the contextual bandit problem on general action and context spaces, where the learner's rewards depend on their selected actions and an observable context. This generalizes the standard multi-armed bandit to the case where side information is available, e.g., patients' records or customers' history, which allows for personalized treatment. We focus on consistency -- vanishing regret compared to the optimal policy -- and show that for large classes of non-i.i.d. contexts, consistency can be achieved regardless of the time-invariant reward mechanism, a property known as universal consistency. Precisely, we first give necessary and sufficient conditions on the context-generating process for universal consistency to be possible. Second, we show that there always exists an algorithm that guarantees universal consistency whenever this is achievable, called an optimistically universal learning rule. Interestingly, for finite action spaces, learnable processes for universal learning are exactly the same as in the full-feedback setting of supervised learning, previously studied in the literature. In other words, learning can be performed with partial feedback without any generalization cost. The algorithms balance a trade-off between generalization (similar to structural risk minimization) and personalization (tailoring actions to specific contexts). Lastly, we consider the case of added continuity assumptions on rewards and show that these lead to universal consistency for significantly larger classes of data-generating processes.
translated by 谷歌翻译
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://www.4seasons-dataset.com/.
translated by 谷歌翻译
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
translated by 谷歌翻译
This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems, where the underlying distributions have bounded moments of some order. We propose to truncate and properly dither the data prior to a uniform quantization. Our major standpoint is that (near) minimax rates of estimation error are achievable merely from the quantized data produced by the proposed scheme. In particular, concrete results are worked out for covariance estimation, compressed sensing, and matrix completion, all agreeing that the quantization only slightly worsens the multiplicative factor. Besides, we study compressed sensing where both covariate (i.e., sensing vector) and response are quantized. Under covariate quantization, although our recovery program is non-convex because the covariance matrix estimator lacks positive semi-definiteness, all local minimizers are proved to enjoy near optimal error bound. Moreover, by the concentration inequality of product process and covering argument, we establish near minimax uniform recovery guarantee for quantized compressed sensing with heavy-tailed noise.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译